Применение электронного микроскопа в цитологии позволило изучить. Методы изучения клетки. Список использованной литературы

План:

1. Что изучает цитология.

2. Представление о том, что организмы состоят из клеток.

3. Методы исследования, применяемые в цитологии.

4. Фракционирование клеток.

5. Радиоавтография.

6. Определение продолжительности некоторых стадий клеточного цикла методом радиоавтографии.

Цитология – наука о клетке. Из среды других биологических наук она выделилась почти 100 лет назад. Впервые обобщенные сведения о строении клеток были собраны в книгу Ж.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитология изучает строение клеток, их функционирование как элементарных живых систем: исследуются функции отдельных клеточных компонентов, процессы воспроизведения клеток, их репарации, приспособление к условиям среды и многие другие процессы, позволяющие судить об общих для всех клеток свойствах и функциях. Цитология рассматривает также особенности строения специализированных клеток. Другими словами, современная цитология – это физиология клетки. Цитология тесно сопряжена с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Это послужило основанием для углубленного изучения клетки уже с позиций этих наук и появления некой синтетической науки о клетке – биологии клетки, или клеточной биологии. В настоящее время термины цитология и биология клетки совпадают, так как их предметом изучения является клетка с ее собственными закономерностями организации и функционирования. Дисциплина «Биология клетки» относится к фундаментальным разделам биологии, потому что она исследует и описывает единственную единицу всего живого на Земле – клетку.

Длительное и пристальное изучение клетки как таковой привело к формулированию важного теоретического обобщения, имеющего общебиологическое значение, а именно к появлению клеточной теории. В XVII в. Роберт Гук, физик и биолог, отличавшийся большой изобретательностью, создал микроскоп. Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что она построена из малюсеньких ничем не заполненных ячеек, разделенных тонкими стенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвал эти маленькие ячейки клетками. В дальнейшем, когда другие биологи начали исследовать под микроскопом растительные ткани, оказалось, что маленькие ячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живых растительных тканях, но у них они не пустые, а содержат каждая по маленькому студенистому тельцу. После того, как микроскопическому исследованию подвергли животные ткани, было установлено, что они также состоят из мелких студенистых телец, но что эти тельца лишь в редких случаях отделены друг от друга стенками. В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо друг от друга сформулировали клеточную теорию, гласящую, что клетки представляют собой элементарные единицы, из которых в конечном счете построены все растения и все животные. В течение какого-то времени двоякий смысл слова клетка еще вызывал некоторые недоразумения, но затем он прочно закрепился за этими маленькими желеобразными тельцами.

Современное представление о клетке тесно связано с техническими достижениями и усовершенствованиями методов исследования. Помимо обычной световой микроскопии, не утратившей своей роли, в последние несколько десятилетий большое значение приобрели поляризационная, ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особое место занимает электронная микроскопия, разрешающая способность которой позволила проникнуть и изучить субмикроскопическую и молекулярную структуру клетки. Современные методы исследования позволили вскрыть детальную картину клеточной организации.

Каждая клетка состоит из ядра и цитоплазмы, отделенных друг от друга и от внешней среды оболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма, эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии, включения, клеточный центр, специализированные органеллы.

Часть организма, выполняющая какую-то особую функцию, называют органом. Любой орган – легкое, печень, почка, например – имеет каждый свою особую структуру, благодаря которой он играет определенную роль в организме. Точно так же в цитоплазме имеются особые структуры, своеобразное строение которых дает им возможность нести определенные функции, необходимые для метаболизма клетки; эти структуры называют органеллами («маленькими органами»).

Выяснение природы, функции и распределения органелл цитоплазмы стало возможным лишь после развития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, с помощью которого биохимики могут выделять относительно чистые фракции клеток, содержащие определенные органеллы, и изучать, таким образом, отдельные интересующие их метаболические реакции; 3) радиоавтография, сделавшая возможным непосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

Метод, с помощью которого органеллы выделяют из клеток, называют фракционированием. Этот метод оказался очень плодотворным, дав биохимикам возможность выделять разные органеллы клетки в относительно чистом виде. Он позволяет, кроме того, определять химический состав органелл и содержащиеся в них ферменты и на основании получаемых данных делать выводы об их функциях в клетке. В качестве первого шага клетки разрушают путем гомогенизации в какой-нибудь подходящей среде, которая обеспечивает сохранность органелл и предотвращает их агрегацию. Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многие другие клеточные органеллы остаются при этом неповрежденными, такие мембранные переплетения, как эндоплазматический ретикулум, а также плазматическая мембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембран нередко замыкаются сами на себя, в результате чего получаются округлые пузырьки различных размеров.

На следующем этапе клеточный гомогенат подвергают ряду центрифугирований, скорость и продолжительность которых всякий раз возрастает; этот процесс называется дифференциальным центрифугированием. Разные органеллы клетки осаждаются на дне центрифужных пробирок при различных скоростях центрифугирования, что зависит от размеров, плотности и формы органелл. Образующийся осадок можно отобрать и исследовать. Быстрее всех осаждаются такие крупные и плотные структуры, как ядра, а для осаждения более мелких и менее плотных структур, таких, как пузырьки эндоплазматического ретикулума, требуются более высокие скорости и более длительное время. Поэтому при низких скоростях центрифугирования ядра осаждаются, а другие клеточные органеллы остаются в суспензии. При более высоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугировании и очень высоких скоростях в осадок выпадают даже такие мелкие частицы, как рибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобы определить чистоту полученных фракций. Все фракции до некоторой степени загрязнены другими органеллами. Если тем не менее удается добиться достаточной чистоты фракций, то их подвергают затем биохимическому анализу, чтобы определить химический состав и ферментативную активность выделенных органелл.

Мурманскийгосударственный технический университет

Кафедра биологии

Доклад на тему:

«Методыисследования в цитологии»

Выполнил:

Студентка 1-го курса

Технического факультета

Кафедры Биология

Серебрякова ЛадаВячеславовна

Проверил:


Мурманск2001


План:

1.Что изучает цитология.

2.Представление о том, что организмы состоят из клеток.

3.Методы исследования, применяемые в цитологии.

4.Фракционирование клеток.

5.Радиоавтография.

6.Определение продолжительности некоторых стадий клеточного цикла методомрадиоавтографии.

Цитология –наука о клетке. Из среды других биологических наук она выделилась почти 100 летназад. Впервые обобщенные сведения о строении клеток были собраны в книгуЖ.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитологияизучает строение клеток, их функционирование как элементарных живых систем:исследуются функции отдельных клеточных компонентов, процессы воспроизведенияклеток, их репарации, приспособление к условиям среды и многие другие процессы,позволяющие судить об общих для всех клеток свойствах и функциях. Цитологиярассматривает также особенности строения специализированных клеток. Другимисловами, современная цитология – это физиология клетки. Цитология тесносопряжена с научными и методическими достижениями биохимии, биофизики,молекулярной биологии и генетики. Это послужило основанием для углубленногоизучения клетки уже с позиций этих наук и появления некой синтетической науки оклетке – биологии клетки, или клеточной биологии. В настоящее время терминыцитология и биология клетки совпадают, так как их предметом изучения является клеткас ее собственными закономерностями организации и функционирования. Дисциплина«Биология клетки» относится к фундаментальным разделам биологии, потому что онаисследует и описывает единственную единицу всего живого на Земле – клетку.

Длительное и пристальноеизучение клетки как таковой привело к формулированию важного теоретическогообобщения, имеющего общебиологическое значение, а именно к появлению клеточнойтеории. В XVII в. Роберт Гук,физик и биолог, отличавшийся большой изобретательностью, создал микроскоп.Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что онапостроена из малюсеньких ничем не заполненных ячеек, разделенных тонкимистенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвалэти маленькие ячейки клетками. В дальнейшем, когда другие биологи началиисследовать под микроскопом растительные ткани, оказалось, что маленькиеячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живыхрастительных тканях, но у них они не пустые, а содержат каждая по маленькомустуденистому тельцу. После того, как микроскопическому исследованию подверглиживотные ткани, было установлено, что они также состоят из мелких студенистыхтелец, но что эти тельца лишь в редких случаях отделены друг от друга стенками.В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо другот друга сформулировали клеточную теорию, гласящую, что клетки представляютсобой элементарные единицы, из которых в конечном счете построены все растенияи все животные. В течение какого-то времени двоякий смысл слова клетка ещевызывал некоторые недоразумения, но затем он прочно закрепился за этимималенькими желеобразными тельцами.

Современное представление оклетке тесно связано с техническими достижениями и усовершенствованиями методовисследования. Помимо обычной световой микроскопии, не утратившей своей роли, впоследние несколько десятилетий большое значение приобрели поляризационная,ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особоеместо занимает электронная микроскопия, разрешающая способность которойпозволила проникнуть и изучить субмикроскопическую и молекулярную структуруклетки. Современные методы исследования позволили вскрыть детальную картинуклеточной организации.

Каждая клеткасостоит из ядра и цитоплазмы, отделенных друг от друга и от внешней средыоболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма,эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии,включения, клеточный центр, специализированные органеллы.

Часть организма, выполняющаякакую-то особую функцию, называют органом. Любой орган – легкое, печень, почка,например – имеет каждый свою особую структуру, благодаря которой он играетопределенную роль в организме. Точно так же в цитоплазме имеются особыеструктуры, своеобразное строение которых дает им возможность нести определенныефункции, необходимые для метаболизма клетки; эти структуры называют органеллами(«маленькими органами»).

Выяснениеприроды, функции и распределения органелл цитоплазмы стало возможным лишь послеразвития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, спомощью которого биохимики могут выделять относительно чистые фракции клеток,содержащие определенные органеллы, и изучать, таким образом, отдельныеинтересующие их метаболические реакции; 3) радиоавтография, сделавшая возможнымнепосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

Метод, с помощьюкоторого органеллы выделяют из клеток, называют фракционированием. Этот методоказался очень плодотворным, дав биохимикам возможность выделять разныеорганеллы клетки в относительно чистом виде. Он позволяет, кроме того,определять химический состав органелл и содержащиеся в них ферменты и наосновании получаемых данных делать выводы об их функциях в клетке. В качествепервого шага клетки разрушают путем гомогенизации в какой-нибудь подходящейсреде, которая обеспечивает сохранность органелл и предотвращает их агрегацию.Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многиедругие клеточные органеллы остаются при этом неповрежденными, такие мембранныепереплетения, как эндоплазматический ретикулум, а также плазматическаямембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембраннередко замыкаются сами на себя, в результате чего получаются округлые пузырькиразличных размеров.

На следующемэтапе клеточный гомогенат подвергают ряду центрифугирований, скорость ипродолжительность которых всякий раз возрастает; этот процесс называетсядифференциальным центрифугированием. Разные органеллы клетки осаждаются на днецентрифужных пробирок при различных скоростях центрифугирования, что зависит отразмеров, плотности и формы органелл. Образующийся осадок можно отобрать иисследовать. Быстрее всех осаждаются такие крупные и плотные структуры, какядра, а для осаждения более мелких и менее плотных структур, таких, какпузырьки эндоплазматического ретикулума, требуются более высокие скорости иболее длительное время. Поэтому при низких скоростях центрифугирования ядраосаждаются, а другие клеточные органеллы остаются в суспензии. При болеевысоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугированиии очень высоких скоростях в осадок выпадают даже такие мелкие частицы, какрибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобыопределить чистоту полученных фракций. Все фракции до некоторой степенизагрязнены другими органеллами. Если тем не менее удается добиться достаточнойчистоты фракций, то их подвергают затем биохимическому анализу, чтобыопределить химический состав и ферментативную активность выделенных органелл.

Сравнительнонедавно был создан другой метод фракционирования клеток – центрифугирование вградиенте плотности; при этом центрифугирование производят в пробирке, вкоторой предварительно наслаивают друг на друга растворы сахарозы всевозрастающей концентрации, а следовательно, и возрастающей плотности. Прицентрифугировании содержащиеся в гомогенате органеллы располагаются вцентрифужной пробирке на тех уровнях, на которых находятся растворы сахарозы,соответствующие им по плотности. Этот метод дает биохимикам возможностьразделять органеллы одинаковых размеров, но разной плотности (рис. 1.).

Радиоавтография– сравнительно новый метод, безмерно расширивший возможности как световой, таки электронной микроскопии. Это в высшей степени современный метод, обязанныйсвоим возникновением развитию ядерной физики, которое сделало возможнымполучение радиоактивных изотопов различных элементов. Для радиоавтографиинеобходимы, в частности, изотопы тех элементов, которые используются клеткойили могут связываться с веществами, используемыми клеткой, и которые можновводить животным или добавлять к культурам в количествах, не нарушающихнормального клеточного метаболизма. Поскольку радиоактивный изотоп (илипомеченное им вещество) участвует в биохимических реакциях так же, как егонерадиоактивный аналог, и в то же время испускает излучение, путь изотопов ворганизме можно проследить с помощью различных методов обнаружениярадиоактивности. Один из способов обнаружения радиоактивности основан на ееспособности действовать на фотопленку подобно свету; но радиоактивное излучениепроникает сквозь черную бумагу, используемую для того, чтобы защититьфотопленку от света, и оказывает на пленку такое же действие, как свет.

Чтобы на препаратах,предназначенных для изучения с помощью светового или электронного микроскопов,можно было обнаружить излучение, испускаемое радиоактивными изотопами,препараты покрывают в темном помещении особой фотоэмульсией, после чегооставляют на некоторое время в темноте. Затем препараты проявляют (тоже втемноте) и фиксируют. Участки препарата, содержащие радиоактивные изотопы,воздействуют на лежащую над ними эмульсию, в которой под действием испускаемогоизлучения возникают темные «зерна». Таким образом, получают радиоавтографы (отгреч. радио – лучевидный, аутос – сам и графо – писать).

Вначале гистологи располагалилишь несколькими радиоактивными изотопами; так, например, во многих раннихисследованиях с применением радиоавтографии использовался радиоактивный фосфор.Позднее стали использовать значительно больше таких изотопов; особенно широкоеприменение нашел радиоактивный изотоп водорода – тритий.

Радиоавтографияимела и имеет до сих пор очень широкое применение для изучения того, где и какв организме протекают те или иные биохимические реакции.

Химическиесоединения, меченые радиоактивными изотопами, которые используются дляисследования биологических процессов, называют предшественниками.Предшественники – это обычно вещества, подобные тем, которые организм получаетиз пищи; они служат строительными блоками для построения тканей и включаются всложные компоненты клеток и тканей таким же образом, как в них включаютсянемеченые строительные блоки. Компонент ткани, в который включается меченыйпредшественник и который испускает излучение, называется продуктом.

Клетки,выращиваемые в культуре, хотя и принадлежат к одному и тому же типу, в любойданный момент времени будут находиться на разных стадиях клеточного цикла, еслине принять специальных мер для синхронизации их циклов. Тем не менее, путемвведения в клетки тритий-тимидина и последующего изготовления радиоавтографовможно определить продолжительность различных стадий цикла. Время наступленияодной стадии – митоза – можно определить и без меченого тимидина. Для этоговыборку клеток из культуры держат под наблюдением в фазово-контрастноммикроскопе, который дает возможность непосредственно следить за течением митозаи устанавливать его сроки. Продолжительность митоза обычно равна 1 ч, хотя вклетках некоторых типов он занимает до 1.5 ч.

Определениепродолжительности G 2-периода .

Для определенияпродолжительности G 2–периода применяют метод, известный под названием импульснойметки: к культуре клеток добавляют меченый тимидин, а спустя короткоевремя заменяют культуральную среду свежей, с тем, чтобы предотвратитьдальнейшее поглощение клетками меченого тимидина. При этом метку включаюттолько в те клетки, которые в течение кратковременного пребывания в среде с тритий-тимидином находились в S-периоде клеточного цикла. Доля такихклеток невелика и лишь небольшая часть клеток получит метку. Кроме того, всеклетки, включающие метку, будут находиться в интерфазе – от клеток, едвавступивших в S-период, дотаких, которые почти закончили его за время воздействия тритий-тимидина. Впробе, взятой сразу после удаления меченого тимидина, метка содержится только винтерфазных ядрах, принадлежащих клеткам, которые в период воздействия меткинаходились в S-периоде; те жеклетки, которые в этот период находились в состоянии митоза, остаютсянемечеными.

Если затем продолжать отбиратьиз культуры пробы через определенные промежутки времени и изготовлять длякаждой последовательной пробы радиоавтограф, то наступит момент, когда метканачнет появляться в митотических d -хромосомах . Метки будутвключаться во все те клетки, которые в период наличия в среде тритий-тимидинанаходились в S-периоде, причемсреди этих клеток будут как только что вступившие в S-период, так ипочти закончившие его. Совершенно очевидно, что эти последние первыми средимеченых клеток проделают митоз и, следовательно, в их митотических хромосомахобнаружится метка. Тем самым промежуток между 1) временем, когда из культурыбыл удален меченый тимидин, и 2) временем появления меченых митотическиххромосом будет соответствовать продолжительности G 2–периодаклеточного цикла.

Определениепродолжительности S -периода .

Поскольку клетки, находящиесяв момент введения в среду метки в самом конце S-периода,первыми вступят в митоз, то, следовательно, в тех клетках, у которых S-периодначинается непосредственно перед удалением метки, меченые митотическиехромосомы появятся в последнюю очередь. Поэтому, если бы нам удалось определитьпромежуток между временем вступления в митоз клеток, помеченных первыми, иклеток, помеченных последними, мы установили бы продолжительность S-периода. Однако,хотя время, когда впервые появляются меченые митотические хромосомы, установитьлегко, время вступления в митоз клеток, помеченных последними, определитьневозможно (этому препятствует очень большое количество меченых делящихсяклеток в последних пробах). Поэтому продолжительность S-периодаприходится определять другим способом.

При исследованиирадиоавтографов последовательных проб клеток, отбираемых через одинаковыепромежутки времени, обнаруживается, что доля клеток, несущих метку в своихмитотических хромосомах, постепенно возрастает, пока мечеными не окажутсябуквально все делящиеся клетки. Однако, по мере того как клетки одна за другойзавершают митоз, они превращаются в меченые интерфазные клетки. Первымизавершают митоз те из меченых клеток, которые вступили в него первыми; исоответственно из клеток с мечеными митотическими хромосомами последнимизавершают митоз те, которые вступили в него позже всех. Посколькупродолжительность митоза всегда одинакова, то, следовательно, если бы мы моглиопределить промежуток между: 1) временем окончания митоза в клетках, включившихметку первыми, и 2) временем окончания митоза в клетках, включивших меткупоследними, мы установили бы продолжительность S-периода.Продолжительность S-периода нетрудно установить, определив промежутокмежду: 1) моментом времени, когда 50% митотических клеток в культуре несутметку, и 2) моментом времени, после которого культура уже не содержит 50%меченых клеток.

Определениевремени генерации (общей продолжительности всего клеточного цикла).

Продолжая отбирать из культурыпробы клеток, можно обнаружить, что меченые фигуры митоза в какой-то моментсовершенно исчезают, а затем появляются вновь. Такие делящиеся клеткипредставляют собой дочерние клетки, происходящие от тех материнских клеток,которые включили метку, находясь в момент воздействия тритий-тимидина в S-периоде. Этиматеринские клетки перешли в S-период, разделились, а затем прошличерез вторую интерфазу и второе деление, то есть проделали один полный цикл ичасть следующего. Время, необходимое для прохождения полного клеточного цикла,называется временем генерации. Оно соответствует промежутку между двумяпоследовательными пиками включения метки и обычно соответствует отрезку междутеми точками последовательных восходящих кривых, в которых 50% фигур митозасодержат метку.


Литература.

А.Хэм,Д.Кормак «Гистология», том 1 Москва «МИР» 1982;

М.Г.Абрамов«Клиническая цитология» Москва «МЕДИЦИНА» 1974;

Ю.С.Ченцов«Общая цитология»

За последние 4045 лет цитология из описательно-морфологической превратилась в экспериментальную науку ставящую перед собой задачи изучения физиологии клетки ее основных жизненных функций и свойств ее биологии. Другими словами – это физиология клетки. Карнуа Биология клетки вышедшей в 1884 г. Выделим некоторые важные вехи в истории изучения биологии клетки.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №1

ВВЕДЕНИЕ В ЦИТОЛОГИЮ

Предмет и задачи курса цитологии.

Место цитологии в системе биологических дисциплин

Цитология (от греч. Kytos – ячейка, клетка) – наука о клетке. Современная цитология изучает строение клеток, их функционирование как элементарных живых систем; исследует функции отдельных клеточных компонентов, процессы воспроизведения клеток, их приспособления к условиям среды и многие другие процессы, позволяющие судить об общих для всех клеток свойствах и функциях.

Цитология рассматривает также особенности специализированных клеток, этапы становления их особых функций и развития специфических клеточных структур.

За последние 40-45 лет цитология из описательно-морфологической превратилась в экспериментальную науку, ставящую перед собой задачи изучения физиологии клетки, ее основных жизненных функций и свойств, ее биологии. Другими словами – это физиология клетки.

Возможность такого переключения интересов исследователей возникла в связи с тем, что цитология тесно сопряжена с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики.

Вообще, цитология тесно связана практически со всеми биологическими дисциплинами, так как все живое на Земле (почти все!) имеет клеточное строение, а цитология как раз и занимается изучением клеток во всем их многообразии.

Цитология тесно связана с зоологией и ботаникой, поскольку изучает особенности строения растительных и животных клеток; с эмбриологией при изучении строения половых клеток; с гистологией – строение клеток отдельных тканей; с анатомией и физиологией, так как на основе цитологических знаний изучается строение тех или иных органов и их функционирование.

Клетка имеет богатый химический состав, в ней протекают сложные биохимические процессы – фотосинтез, биосинтез белка, дыхание, а также происходят важные физические явления, в частности, возникновение возбуждения, нервного импульса, поэтому цитология тесно связана с биохимией и биофизикой.

Чтобы понять сложные механизмы наследственности, нужно изучить и понять их материальные носители – гены, ДНК, которые являются составными компонентами клеточных структур. Из этого возникает тесная связь цитологии с генетикой и молекулярной биологией.

Данные цитологических исследований широко используются в медицине, сельском хозяйстве, ветеринарии, в различных отраслях промышленности (пищевая, фармацевтическая, парфюмерная и др.). Важное место также занимает цитология в преподавании биологии в школе (курс общей биологии в старших классах).

Краткий исторический очерк развития цитологии

В целом цитология – наука довольно молодая. Из среды других биологических наук она выделилась немногим более ста лет назад. Впервые обобщенные сведения о строении клеток были собраны в книге Ж.Б. Карнуа «Биология клетки», вышедшей в 1884 г. Появлению этой книги предшествовал длительный и бурный период поисков, открытий, дискуссий, который привел к формулированию так называемой клеточной теории, имеющей огромное общебиологическое значение.

Выделим некоторые важные вехи в истории изучения биологии клетки.

Конец 16 – начало 17 столетия. Изобретателями микроскопа по разным данным являются Захария Янсен (1590 г., Голландия), Галилео Галилей (1610 г., Италия), Корнелиус Дреббель (1619-1620 гг., Голландия). Первые микроскопы были весьма громоздкими и дорогими и использовались знатными людьми для собственного развлечения. Но постепенно они усовершенствовались и стали превращаться из игрушки в инструмент научных исследований.

1665 г. Роберт Гук (Англия), пользуясь микроскопом, сконструированным английским физиком Х. Гюйгенсом, изучал строение пробки и впервые употребил термин «клетка» для описания структурных единиц, из которых состоит эта ткань. Он считал, что клетки пустые, а живое вещество – это клеточные стенки.

1675- 1682 гг. М. Мальпиги и Н. Грю (Италия) подтвердили клеточное строение растений

1674 г. Антонио ван Левенгук (Голландия) открыл одноклеточные организмы, в том числе бактерии (1676 г.). Он же впервые увидел и описал животные клетки – эритроциты крови, сперматозоиды.

1827 г. Долланд резко улучшил качество линз. После этого интерес к микроскопии быстро возрос и распространился.

1825 г. Ян Пуркине (Чехия) первым описывает клеточное ядро в яйцеклетке птиц. Он называет его «зародышевым пузырьком» и закрепляет за ним функцию «производящей силы яйца».

1827 г. Русский ученый Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки. Это открытие показало, что клетка – единица не только строения, но и развития всех живых организмов.

1831 г. Роберт Броун (английский ботаник) впервые описал ядро в растительных клетках. Он придумал название «нуклеус» – «ядро» и впервые заявил, что оно обычная составная часть любой клетки, имеющая некое существенное значение для ее жизни.

1836 г. Габриель Валентин, ученик Пуркине, открывает ядро животных клеток – клеток эпителия конъюнктивы, соединительной оболочки глаза. Внутри этого «нуклеуса» он находит и описывает ядрышко.

С этого момента ядро стали выискивать и находить во всех тканях растений и животных.

1839 г. Теодор Шванн (немецкий физиолог и цитолог) опубликовал книгу «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой он обобщил имеющиеся знания о клетке, в том числе результаты исследований немецкого ботаника Матиаса Якоба Шлейдена о роли ядра в клетках растений. Главная идея книги (потрясающая по своей простоте) – жизнь сосредоточена в клетках – вызвала революцию в биологии. Иными словами Т. Шванн и М. Шлейден сформулировали клеточную теорию. Основные ее положения тогда были следующие:

1) как растительные, так и животные организмы состоят из клеток;

2) клетки растительных и животных организмов развиваются аналогично и близки друг к другу по строению и функциональному назначению;

3) каждая клетка способна к самостоятельной жизнедеятельности.

Клеточная теория – одно из выдающихся обобщений биологии XIX в., давшее основу для понимания жизни и раскрытия эволюционных связей между организмами.

1840 г. Ян Пуркине предложил название «протоплазма» для клеточного содержимого, убедившись в том, что именно оно (а не клеточные стенки) представляют собой живое вещество. Позднее был введен термин «цитоплазма».

1858 г. Рудольф Вирхов (немецкий патолог и общественный деятель) показал, что все клетки образуются из других клеток путем клеточного деления. Это положение в дальнейшем также вошло в клеточную теорию.

1866 г. Эрнст Геккель (немецкий биолог, основоположник филогенетического направления дарвинизма) установил, что хранение и передачу наследственных признаков осуществляет ядро.

1866-1888 гг. Подробно изучено клеточное деление и описаны хромосомы.

1880-1883 гг. Открыты пластиды, в частности хлоропласты.

1876 г. Открыт клеточный центр.

1989 г. – Открыт аппарат Гольджи.

1894 г. Открыты митохондрии.

1887-1900 гг. Усовершенствованы микроскоп, а также методы фиксации, окрашивания препаратов и приготовления срезов. Цитология начала приобретать экспериментальный характер. Ведутся эмбриологические исследования, чтобы выяснить, каким образом клетки взаимодействуют друг с другом в процессе роста многоклеточного организма.

1900 г. Вновь открыты законы Менделя, забытые с 1865 г., и это дало толчок развитию цитогенетики, занимающейся изучением роли ядра в передаче наследственных признаков.

Световой микроскоп к этому времени почти достиг теоретического предела разрешения; развитие цитологии естественно замедлилось.

1930-е годы Появился электронный микроскоп.

С 1946 г. и по настоящее время электронный микроскоп получил широкое распространение в биологии, дав возможность исследовать строение клетки гораздо более подробно. Это «тонкое» строение стали называть ультраструктурой.

Роль отечественных ученых в развитии учения о клетке.

Каспар Фридрих Вольф (1733-1794) – член Петербургской АН, выступал против метафизических представлений о развитии как росте уже готового организма, заложенного в половой клетке (теория преформизма).

П.Ф. Горянинов – русский биолог, описавший различные формы клеток и еще до Шванна и Шлейдена высказывавший близкие к ним взгляды.

Вторая половина XIX в. – начало ХХ в.: русский цитолог И.Д. Чистяков впервые описал митоз в спорах плауна; И.Н. Горожанкин изучал цитологические основы оплодотворения у растений; С.Т. Навашин в 1898 г. открыл двойное оплодотворение у растений.

Основные положения современной клеточной теории

1. Клетка как элементарная живая система, способная к самообновлению, саморегуляции и самовоспроизведению, лежит в основе строения и развития всех живых организмов.

2. Клетки всех организмов построены по единому принципу, сходны (гомологичны) по химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3. Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления материнской клетки.

4. В многоклеточных организмах клетки специализированы по выполняемым функциям и образуют ткани. Из тканей состоят органы и системы органов, которые тесно связаны между собой.

С развитием науки лишь одно положение клеточной теории оказалось не абсолютно верным – первое. Не все живые организмы имеют клеточную организацию. Это стало ясным с открытием вирусов. Это неклеточная форма жизни, но существование и размножение вирусов возможно только при использовании ферментативных систем клеток. Поэтому вирус не является элементарной единицей живой материи.

Клеточная форма организации живого, возникнув однажды, стала основой всего дальнейшего развития органического мира. Эволюция бактерий, простейших, сине-зеленых водорослей и других организмов целиком происходила за счет структурных, функциональных и биохимических преобразований клетки. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, однако общий план строения клетки не претерпел принципиальных изменений.

Возникновение многоклеточности резко расширило возможности прогрессивной эволюции органических форм. Ведущими здесь стали изменения систем более высокого порядка (тканей, органов, индивидов, популяций и т.д.). При этом у тканевых клеток закреплялись особенности, полезные для индивида и вида в целом, независимо от того, как данная особенность сказывается на жизнеспособности и способности к размножению самих тканевых клеток. В результате – клетка стала подчиненной частью целостного организма. Например, функционирование ряда клеток связано с их гибелью (секреторные клетки), утратой способности к размножению (нервные клетки), утратой ядра (эритроциты млекопитающих).

Методы современной цитологии

Цитология возникла как ветвь микроанатомии, и поэтому основной метод, который используют цитологи – это метод световой микроскопии. В настоящее время этот метод нашел целый ряд дополнений и модификаций, что значительно расширило круг задач и вопросов, решаемых цитологией. Революционным моментом в развитии современной цитологии и биологии вообще было применение электронной микроскопии, открывшей необычайно широкие перспективы. С введением электронной микроскопии в ряде случаев уже трудно провести границу между собственно цитологией и биохимией, они объединяются на уровне макромолекулярного изучения объектов (например, микротрубочек, мембран, микрофиламентов и т.д.). Все же главным методическим приемом в цитологии остается визуальное наблюдение объекта. Кроме того, в цитологии применяются многочисленные приемы препаративной и аналитической биохимии, методы биофизики.

Познакомимся с некоторыми методами цитологических исследований, которые для удобства изучения разделим на несколько групп.

I . Оптические методы .

1. Световая микроскопия. Объекты исследования – препараты, которые можно рассматривать в проходящем свете. Они должны быть достаточно прозрачны, тонки и контрастны. Биологические объекты не всегда обладают этими качествами. Для изучения их в биологическом микроскопе необходимо предварительно приготовить соответствующие препараты путем фиксации, обезвоживания, изготовления тонких срезов, окрашивания. Клеточные структуры в таких фиксированных препаратах не всегда соответствуют истинным структурам живой клетки. Их изучение должно сопровождаться изучением живого объекта в темнопольном и фазово-контрастном микроскопах, где контрастность повышается за счет дополнительных устройств к оптической системе.

Предельное разрешение, которое может дать биологический микроскоп при масляной иммерсии, - 1700 Ǻ (0,17 мкм) в монохроматическом свете и 2500 Ǻ (0,25 мкм) в белом свете. Дальнейшее увеличение разрешения может идти лишь за счет уменьшения длины волны света.

2. Темнопольная микроскопия . Метод основан на принципе рассеивания света на границе между фазами с разными показателями преломления. Достигается это в темнопольном микроскопе или в обычном биологическом микроскопе специальным темнопольным конденсором, который пропускает только очень косые краевые лучи источника света. Поскольку краевые лучи имеют сильный наклон, они не попадают в объектив, и поле зрения микроскопа оказывается темным, а объект, освещенный рассеянным светом, кажется светлым. На препаратах клеток обычно содержатся структуры разной оптической плотности. На общем темном фоне эти структуры четко видны благодаря их различному свечению, а светятся они потому, что рассеивают попадающие на них лучи света (эффект Тиндаля).

В темном поле можно изучать живые объекты. Разрешающая способность такого микроскопа большая (меньше 0,2 мкм).

3. Фазово-контрастная микроскопия . Метод основан на том, что отдельные участки прозрачного препарата отличаются от окружающей среды по показателю преломления. Поэтому проходящий через них свет распространяется с различной скоростью, т.е. испытывает смещение фаз, что выражается в изменении яркости. Частицы с показателем преломления, большим показателя преломления среды, дают темные изображения на светлом фоне, с показателем, меньшим показателя среды, - изображения более светлые, чем окружающий фон.

Фазово-контрастная микроскопия позволяет выявить множество деталей и особенностей живых клеток и срезов тканей. Большое значение имеет этот метод для изучения тканей, культивируемых in vitro .

4. Интерференционная микроскопия . Этот метод близок к методу фазово-контрастной микроскопии и дает возможность получить контрастные изображения неокрашенных прозрачных живых клеток, а также вычислить сухой вес клеток. Интерференционный микроскоп устроен так, что пучок параллельных световых лучей от осветителя разделяется на два потока. Один из них проходит через объект и приобретает изменения в фазе колебания, другой идет, минуя объект. В призмах объектива оба потока вновь соединяются и интерферируют между собой. В результате интерференции будет строиться изображение, на котором участки клетки, обладающие разной толщиной или разной плотностью, будут отличаться друг от друга по степени контрастности. В этом приборе, измеряя сдвиги фаз, можно определить концентрацию и массу сухого вещества в объекте.

II . Витальное (прижизненное) изучение клеток.

1. Приготовление препаратов живых клеток. Световой микроскоп позволяет видеть живые клетки. Для кратковременного наблюдения клетки помещают просто в жидкую среду на предметное стекло; если нужно длительное наблюдение за клетками, то используются специальные камеры. В любом из этих случаев клетки изучаются в специально подобранных средах (вода, физиологический раствор, раствор Рингера и др.).

2. Метод клеточных культур . Культивирование клеток и тканей вне организма (in vitro ) связано с соблюдением определенных условий; подбирается подходящая питательная среда, поддерживается строго определенная температура (около 20 0 для клеток холоднокровных животных и около 37 0 для теплокровных), обязательным является соблюдение стерильности и регулярные пересевы культуры на свежую питательную среду. Сейчас метод культивирования клеток вне организма широко используется не только для цитологических, но и для генетических, вирусологических и биохимических исследований.

3. Методы микрохирургии . Данные методы предполагают оперативное воздействие на клетку. Микрооперации на отдельных клетках мелких размеров стали проводить с начала ХХ столетия, когда был сконструирован прибор, называемый микроманипулятором. С его помощью клетки разрезают, извлекают из них отдельные части, вводят вещества (микроинъекция) и т.д. Микроманипулятор совмещается с обычным микроскопом, в который наблюдают за ходом операции. Микрохирургическими инструментами служат стеклянные крючки, иглы, капилляры, которые имеют микроскопические размеры. Кроме механического воздействия на клетки в микрохирургии в последнее время широко применяют микропучки ультрафиолетового света или лазерные микропучки. Это дает возможность практически моментально инактивировать отдельные участки живой клетки.

4. Методы прижизненной окраски . При изучении живых клеток пытаются их окрашивать с помощью так называемых витальных красителей. Это красители кислой (трипановый синий, литиевый кармин) или основной (нейтральный красный, метиленовый синий) природы, применяемые при очень большом разведении (1:200000), следовательно, влияние красителя на жизнедеятельность клетки минимальное. При окрашивании живых клеток краситель собирается в цитоплазме в виде гранул, а в поврежденных или мертвых клетках происходит диффузное окрашивание цитоплазмы и ядра. Время для окрашивания препаратов сильно варьирует, но для большинства витальных красителей оно равно от 15 до 60 минут.

III . Цитофизические методы

1. Метод поглощения рентгеновских лучей . Метод основан на том, что разные вещества в определенной длине волны по-разному поглощают рентгеновские лучи. Пропуская рентгеновские лучи через препарат ткани, можно по спектру поглощения определить ее химический состав.

2. Флуоресцентная микроскопия . В основу метода положено свойство некоторых веществ флуоресцировать в ультрафиолетовых лучах. Для этих целей используют ультрафиолетовый микроскоп, в конденсоре которого установлен светофильтр, выделяющий из общего светового пучка синие и ультрафиолетовые лучи. Другой светофильтр, помещенный перед глазами наблюдателя, поглощает эти лучи, пропуская лучи флуоресценции, испускаемые препаратом. Источником света служат ртутные лампы и лампы накаливания, дающие сильное ультрафиолетовое излучение в общем световом пучке.

Флуоресцентная микроскопия дает возможность изучать живую клетку. Целый ряд структур и веществ, содержащихся в клетках, обладает собственной (первичной) флуоресценцией (хлорофилл, витамины А, В 1 и В 2 , некоторые гормоны и бактериальные пигменты). Объекты, не обладающие собственной флуоресценцией, могут быть подкрашены специальными флуоресцирующими красителями – флуорохромами . Тогда они просматриваются в ультрафиолете (вторичная флуоресценция). С помощью этого метода можно видеть форму объекта, распределение флуоресцирующих веществ в объекте, содержание этих веществ).

3. Метод радиографии . Метод основан на том, что радиоактивные изотопы, будучи введенными в организм, вступают в общий клеточный обмен и включаются в молекулы соответствующих веществ. Места их локализации определяют по излучению, даваемому изотопами и обнаруживаемому по засвечиванию фотопластинки при наложении ее на препарат. Препарат изготовляется спустя некоторое время после введения изотопа с учетом времени прохождения определенных стадий метаболизма. Этот метод широко применяется для выяснения локализации мест синтеза биополимеров, для определения путей переноса веществ в клетке, для наблюдения за миграцией или свойствами отдельных клеток.

IV . Методы исследования ультраструктуры

1. Поляризационная микроскопия . В основе метода лежит способность различных компонентов клеток и тканей к преломлению поляризованного света. Некоторые клеточные структуры, например нити веретена деления, миофибриллы, реснички мерцательного эпителия и др., характеризуются определенной ориентацией молекул и обладают свойством двойного лучепреломления. Это так называемые анизотропные структуры .

От обычного биологического микроскопа поляризационный отличается тем, что перед конденсором помещается поляризатор, а за препаратом и объективом помещены компенсатор и анализатор, позволяющие детально исследовать двойное лучепреломление в рассматриваемом объекте. Поляризатор и анализатор – это призмы, сделанные из исландского шпата (призмы Николя). Поляризационный микроскоп дает возможность определить ориентировку частиц в клетках и других структурах, четко видеть структуры с двойным лучепреломлением, а при соответствующей обработке препаратов можно сделать наблюдения над молекулярной организацией той или иной части клетки.

2. Метод рентгеноструктурного анализа . В основу метода положено свойство рентгеновских лучей испытывать дифракцию при прохождении через кристаллы. Такую же дифракцию они претерпевают, если вместо кристаллов поставить биологические объекты – сухожилие, целлюлозу и другие. На экране или фотопластинке появляется ряд колец, концентрически расположенных пятен и полос. Угол дифракции определяется расстоянием между группами атомов и молекулами в объекте. Чем больше расстояние между структурными единицами, тем меньше угол дифракции, и наоборот. На экране это соответствует расстоянию между темными зонами и центром. Ориентированные частицы дают на диаграмме круги, серпы, точки; неориентированные частицы в аморфных веществах дают изображение концентрических колец.

Метод рентгеноструктурного анализа применяется для изучения строения молекул белков, нуклеиновых кислот и других веществ, входящих в состав цитоплазмы и ядра клеток. Он дает возможность определить пространственное расположение молекул, точно измерить расстояние между ними и изучить внутримолекулярную структуру.

3. Электронная микроскопия . Рассматривая характеристики светового микроскопа, можно убедиться, что единственным путем увеличения разрешения оптической системы будет использование источника освещения, испускающего волны с наименьшей длиной. Таким источником может быть раскаленная нить, которая в электрическом поле выбрасывает поток электронов, последний можно фокусировать, пропуская через магнитное поле. Это послужило основой для создания в 1933 г. электронного микроскопа. Основное отличие электронного микроскопа от светового заключается в том, что в нем вместо света используется быстрый поток электронов, а стеклянные линзы заменены электромагнитными полями. Изображение дают электроны, прошедшие через объект и не отклоненные им. В современных электронных микроскопах достигнуто разрешение в 1Ǻ (0,1 нм).

Под электронным микроскопом просматриваются неживые объекты – препараты. Живые объекты изучать пока не удается, т.к. объекты помещаются в вакуум, гибельный для живых организмов. В вакууме электроны, не рассеиваясь, попадают на объект.

Объекты, изучаемые под электронным микроскопом, должны иметь очень малую толщину, не больше 400-500 Ǻ (0,04-0,05 мкм), иначе они оказываются непроницаемыми для электронов. Для этих целей применяют ультрамикротомы , принцип работы которых построен на тепловом расширении стержня, подающего нож к объекту или, наоборот, объект к ножу. В качестве ножей используются специально заточенные мелкие алмазы.

Биологические объекты, особенно вирусы, фаги, нуклеиновые кислоты, тонкие мембраны, обладают слабой способностью рассеивать электроны, т.е. низкой контрастностью. Контрастность их увеличивают путем напыления на объект тяжелых металлов (золото, платина, хром), углеродного напыления, с помощью обработки препаратов осмиевой или вольфрамовой кислотами и некоторыми солями тяжелых металлов.

4. Специальные методы электронной микроскопии биологических объектов. В настоящее время методы электронной микроскопии развиваются и совершенствуются.

Метод замораживания – травления – заключается в том, что объект сначала быстро замораживают жидким азотом, а затем при той же температуре переносят в специальную вакуумную установку. Там замороженный объект механическим способом скалывается охлажденным ножом. При этом обнажаются внутренние зоны замороженных клеток. В вакууме часть воды, перешедшей в стекловидную форму, возгоняется («травление»), а поверхность скола последовательно покрывается тонким слоем испаренного углерода, а затем металла. Таким образом получается пленка-слепок, повторяющая прижизненную структуру материала, которую изучают в электронном микроскопе.

Методы высоковольтной микроскопии – сконструированы электронные микроскопы с ускоряющим напряжением 1-3 млн. В. Преимущество этого класса приборов в том, что при высокой энергии электронов, которые меньше поглощаются объектом, можно рассматривать образцы большей толщины (1-10 мкм). Этот метод перспективен и в другом отношении: если при сверхвысокой энергии электронов уменьшается их воздействие с объектом, то в принципе это можно использовать при изучении ультраструктуры живых объектов. Сейчас ведутся работы в этом направлении.

Метод сканирующей (растровой) электронной микроскопии позволяет изучить трехмерную картину поверхности клетки. При этом методе фиксированный и специальным образом высушенный объект покрывается тонким слоем испаренного металла (чаще всего золота), тонкий пучок электронов пробегает по поверхности объекта, отражается от него и попадает в приемное устройство, передающее сигнал на электронно-лучевую трубку. Благодаря огромной глубине фокуса сканирующего микроскопа, которая значительно больше, чем у просвечивающего, получается почти трехмерное изображение исследуемой поверхности.

V . Цито- и гистохимические методы .

Такими методами можно определить содержание и локализацию веществ в клетке с помощью химических реактивов, дающих с выявленным веществом новое вещество специфического цвета. Методы аналогичны методам определения веществ в аналитической химии, но реакция происходит непосредственно на препарате ткани, и именно в том месте, где локализовано искомое вещество.

Количество конечного продукта цитохимической реакции можно определить с помощью метода цитофотометрии. Основу его составляет определение количества химических веществ по поглощению ими света определенной длины волны. Было найдено, что интенсивность поглощения лучей пропорционально концентрации вещества при одной и той же толщине объекта. Следовательно, оценивая степень поглощения света данным веществом, можно узнать его количество. Для такого рода исследований используют приборы – микроскопы-цитофотометры; у них за объективом расположен чувствительный фотометр, регистрирующий интенсивность прошедшего через объектив светового потока. Зная площадь или объем измеряемой структуры и значение поглощения, можно определить как концентрацию данного вещества, так и его абсолютное содержание.

Разработаны приемы количественной флуорометрии, позволяющей по степени свечения определить содержание веществ, с которыми связываются флуорохромы. Так, для выявления специфических белков применяют метод иммунофлуоресценции – иммунохимические реакции с использованием флуоресцирующих антител. Этот метод обладает очень большой специфичностью и чувствительностью. Его можно использовать для выявления не только белков, но и отдельных последовательностей нуклеотидов в ДНК или для определения мест локализации РНК–ДНК-гибридных молекул.

VI . Фракционирование клеток.

В цитологии широко применяют различные методы биохимии, как аналитические, так и препаративные. В последнем случае можно получить в виде отдельных фракций разнообразные клеточные компоненты и изучать их химию, ультраструктуру и свойства. Так, в настоящее время в виде чистых фракций получают практически любые клеточные органеллы и структуры: ядра, ядрышки, хроматин, ядерные оболочки, плазматическую мембрану, вакуоли ЭПС, рибосомы, аппарат Гольджи, митохондрии, их мембраны, пластиды, микротрубочки, лизосомы и т.д.

Получение клеточных фракций начинается с общего разрушения клетки, с ее гомогенизации. Затем из гомогенатов уже можно выделять фракции. Одним из основных способов выделения клеточных структур является дифференциальное (разделительное) центрифугирование. Принцип его применения в том, что время для оседания частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки. Полученные фракции, прежде чем их анализировать биохимическими способами, необходимо проверить на чистоту с помощью электронного микроскопа.

Клетка – элементарная единица живого.

Прокариоты и эукариоты

Клетка представляет собой самовоспроизводящуюся систему. В ней имеется цитоплазма и генетический материал в форме ДНК. ДНК регулирует жизнедеятельность клетки и воспроизводит самое себя, благодаря чему образуются новые клетки.

Размеры клеток . Бактерии – диаметр 0,2 мкм. Чаще клетки бывают 10-100 мкм, реже – 1-10 мм. Есть очень крупные: яйцеклетки страусов, пингвинов, гусей – 10-20 см, нервные клетки и млечные сосуды растений – до 1 м и более.

Форма клеток : округлые (клетки печени), овальные (эритроциты земноводных), многогранные (некоторые клетки растений), звездчатые (нейроны, меланофоры), дисковидные (эритроциты человека), веретеновидные (гладкомышечные клетки) и т.д.

Но, несмотря на многообразие форм и размеров, организация клеток всех живых организмов подчинена единым принципам строения: протопласт, состоящий из цитоплазмы и ядра, и плазматическая мембрана. Цитоплазма, в свою очередь, включает в себя гиалоплазму, органоиды (общие органоиды и органоиды специального назначения) и включения.

В зависимости от особенностей строения составных частей все клетки делятся на прокариотические и эукариотические .

Прокариотические клетки характерны для бактерий и сине-зеленых водорослей (цианобактерий). У них нет истинного ядра, ядрышек и хромосом, имеется лишь нуклеоид , лишенный оболочки и состоящий из одной кольцевой молекулы ДНК, связанной с небольшим количеством белка. У прокариот отсутствуют мембранные органеллы – митохондрии, ЭПС, хлоропласты, лизосомы и комплекс Гольджи. Имеются лишь более мелкие, чем у эукариот, рибосомы.

Поверх плазматической мембраны у прокариот имеется жесткая клеточная стенка и, часто, слизистая капсула. Плазматическая мембрана образует впячивания – мезосомы , на мембранах которых располагаются окислительно-восстановительные ферменты, а у фотосинтезирующих прокариот соответствующие пигменты (бактериохлорофилл у бактерий, хлорофилл и фикоцианин – у цианобактерий). Таким образом, эти мембраны выполняют функции митохондрий, хлоропластов и других органелл.

К эукариотам относятся одноклеточные животные (протисты), грибы, растения, животные. У них кроме четко отграниченного двойной мембраной ядра, имеется много других мембранных структур. По количеству мембран органоиды эукариотических клеток можно разделить на три основные группы: одномембранные (ЭПС, комплекс Гольджи, лизосомы), двумембранные (митохондрии, пластиды, ядро), немембранные (рибосомы, клеточный центр). Кроме того, вся цитоплазма разделена внутренними мембранами на реакционные пространства – компартменты (отсеки). В этих отсеках одновременно и независимо друг от друга протекают различные химические реакции.

Сравнительная характеристика различных типов

эукариотических клеток (из Лемеза, Лисов, 1997)

Признаки

Клетки

протист

грибов

растений

животных

Клеточная стенка

Крупная

вакуоль

Хлоропласты

Способ

питания

Центриоли

Резервный питательный углевод

у многих имеется

редко

бывают часто

авто- и гетеротрофное

бывают

часто

крахмал, гликоген, парамил, хризоламинарин

в основном из хитина

есть

гетеротроф-

ное

бывают

редко

гликоген

из целлюлозы

есть

есть

автотрофное

только у некоторых мхов и папоротников

крахмал

гетеротрофное

есть

гликоген

Сходство и отличия животных и растительных клеток

Растительные и животные клетки сходны по следующим признакам:

1). Общий план строения клетки – наличие цитоплазматической мембраны, цитоплазмы, ядра.

2). Единый план строения цитоплазматической мембраны, построенной по жидкостно-мозаичному принципу.

3). Общие органоиды – рибосомы, митохондрии, ЭПС, комплекс Гольджи, лизосомы.

4). Общность процессов жизнедеятельности – обмен веществ, размножение, рост, раздражимость и т.д.

В то же время растительные и животные клетки отличаются:

1). По форме: растительные более однообразные, животные – очень разнообразные.

2). По размерам: растительные – более крупные, животные – мелкие.

3). По расположению в тканях: растительные – плотно прилегают друг к другу, животные расположены рыхло.

4). У растительных клеток имеется дополнительная оболочка из целлюлозы.

5). Растительные клетки имеют крупные вакуоли. У животных они если и есть, то маленькие и появляются в процессе старения.

6). Растительные клетки обладают тургором, они упруги. Животные – мягкие.

7). В растительных клетках присутствуют пластиды.

8). Растительные клетки способны к автотрофному питанию, животные – гетеротрофы.

9). У растений нет центриолей (кроме некоторых мхов и папоротников), у животных они есть всегда.

10). Растительные клетки обладают неограниченным ростом.

11). Растительные клетки в качестве запасного питательного вещества накапливают крахмал, животные – гликоген.

12). У животных клеток поверх цитоплазматической мембраны расположен гликокаликс, у растительных его нет.

13). Синтез АТФ в животных клетках происходит в митохондриях, у растительных – в митохондриях и пластидах.

Другие похожие работы, которые могут вас заинтересовать.вшм>

10475. ПРЕДМЕТ И ЗАДАЧИ ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ. ЦИТОПЛАЗМА. ОРГАНЕЛЛЫ И ВКЛЮЧЕНИЯ КЛЕТКИ. СИМПЛАСТЫ И СИНТИЦИИ. СТРУКТУРА ИЗУЧАЕМОГО ПРЕДМЕТА 18.83 KB
Гук который при помощи сконструированного им примитивного микроскопа увидел в срезе пробкового дерева клетки 1665 год.Пуркинье обнаружил в клетке цитоплазму в 1833 году Броун увидел в клетке ядро в 1838 году Шванн пришел к заключению что клетки различных организмов имеют сходное строение в 1858 году Вирхов установил что новые клетки образуются в результате деления материнской клетки.
2042. Управление качеством: предмет и задачи курса 18.79 KB
Говоря о проблеме качества следует отметить что за этим понятием всегда стоит потребитель. Именно с помощью современных методов менеджмента качества передовые зарубежные фирмы добились лидирующих позиций на различных рынках. Российские предприятия пока еще отстают в области применения современных методов менеджмента качества. Между тем повышение качества несет поистине колоссальные возможности.
7774. Предмет и задачи курса «Охрана труда» 21.72 KB
В Республике Беларусь РБ по официальным данным ежегодно изза нарушений требований охраны труда на производстве травмируется свыше 5 тысяч работников из них около 250 погибает свыше 800 человек получает тяжелые травмы. На промышленных предприятиях республики и в сельском хозяйстве во вредных условиях труда занято более 30 работающих. Так в РБ изза травматизма на производстве теряется порядка 180 – 200 тысяч человекодней ежегодно страховые выплаты по обязательному страхованию от несчастных случаев на производстве и профзаболеваний...
10725. Предмет, цели и задачи курса. Теоретические основы изучения и практического использования закономерностей и механизмов возникновения и развития конфликтов, принципов и технологий управления ими в деятельности ОВД 47.97 KB
Вопросы: Предмет цели и задачи курса Психология конфликта. Теоретикометодологические основы психологии конфликта. Роль и специфика применения знаний психологии конфликта в деятельности органов внутренних дел. Краткое содержание Актуальность данной темы обусловливается не только тем что она вводит в курс нового предмета для изучения – психологии конфликта но и помогает в нем сориентироваться понять что традиции накопления конфликтологических идей имеют многовековую историю.
10977. Предмет, цель и задачи курса. История развития психологии, ее основные отрасли и методы. Теоретические основы изучения и практического использования психологических закономерностей в правоохранительной деятельности 30.42 KB
Методологические основы психологии как науки. Существование психологии как самостоятельной научной дисциплины насчитывает менее полтора веков но основная проблематика занимает философскую мысль с тех пор как существует философия. Психология как наука о сознании. Психология как наука о поведении.
6046. Правовое обеспечение сервисной деятельности в системе правовых дисциплин 22.92 KB
Источники сервисного права. Среди ученых рассматривающих сервисное право как самостоятельную отрасль права Гущин В. Сервисное право рассматривает следующие ключевые вопросы: сервисное право как наука и как отрасль права; источники сервисного права...
3862. Предмет, методология и функции курса «История политических учений Запада» 13.32 KB
В системе юридических наук и юридического образования история политических и правовых учений является отдельной самостоятельной научной и учебной дисциплиной одновременно исторического и теоретического профилей. Эта ее особенность обусловлена тем что в рамках данной юридической дисциплины исследуется и освещается специфический предмет история возникновения и развития теоретических знаний о государстве праве политике и законодательстве история политических и правовых теорий история теорий права и государства. Под соответствующими...
19978. Содержание правоотношения его место в правовой системе 40.31 KB
Может отвечать по своим обязательствам вверенным ему имуществом а также от своего имени приобретать и осуществлять имущественные и личные неимущественные права нести обязанности быть истцом и ответчиком в суде; Действует на определенной территории имеет территориальный масштаб деятельности...
10901. Предмет изучения институциональной экономики и её место в современной экономической теории 32.33 KB
Основные течения современной этапа развития институциональной экономики как науки. Онтологически институциональная экономика institutionl economy представляет собой особую подсистему экономической системы общества в свою очередь обладающую системными свойствами что позволяет рассматривать ее как институциональную систему хозяйства – целостную совокупность взаимосвязанных и упорядоченных институтов характеризующуюся эмерджентностью и синергическим эффектом. При этом если в качестве точки отсчета выбрать неоклассическую теорию...
9339. Место и роль государства в политической системе общества 15.23 KB
Место и роль государства в политической системе общества. Институты политической системы 9. Основой политической системы общества является политическая власть по поводу использования которой формируются и функционируют многообразные государственные и общественнополитические институты нормы и др. Структура политической системы представляет собой многоуровневое образование состоящее из нескольких подсистем.

Мурманский государственный технический университет

Кафедра биологии

Доклад на тему:

"Методы исследования в цитологии"

Выполнил:

Студентка 1-го курса

Технического факультета

Кафедры Биология

Серебрякова Лада Вячеславовна

Проверил:

Мурманск 2001

План:

1. Что изучает цитология.

2. Представление о том, что организмы состоят из клеток.

3. Методы исследования, применяемые в цитологии.

4. Фракционирование клеток.

5. Радиоавтография.

6. Определение продолжительности некоторых стадий клеточного цикла методом радиоавтографии.

Цитология – наука о клетке. Из среды других биологических наук она выделилась почти 100 лет назад. Впервые обобщенные сведения о строении клеток были собраны в книгу Ж.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитология изучает строение клеток, их функционирование как элементарных живых систем: исследуются функции отдельных клеточных компонентов, процессы воспроизведения клеток, их репарации, приспособление к условиям среды и многие другие процессы, позволяющие судить об общих для всех клеток свойствах и функциях. Цитология рассматривает также особенности строения специализированных клеток. Другими словами, современная цитология – это физиология клетки. Цитология тесно сопряжена с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Это послужило основанием для углубленного изучения клетки уже с позиций этих наук и появления некой синтетической науки о клетке – биологии клетки, или клеточной биологии. В настоящее время термины цитология и биология клетки совпадают, так как их предметом изучения является клетка с ее собственными закономерностями организации и функционирования. Дисциплина «Биология клетки» относится к фундаментальным разделам биологии, потому что она исследует и описывает единственную единицу всего живого на Земле – клетку.

Длительное и пристальное изучение клетки как таковой привело к формулированию важного теоретического обобщения, имеющего общебиологическое значение, а именно к появлению клеточной теории. В XVII в. Роберт Гук, физик и биолог, отличавшийся большой изобретательностью, создал микроскоп. Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что она построена из малюсеньких ничем не заполненных ячеек, разделенных тонкими стенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвал эти маленькие ячейки клетками. В дальнейшем, когда другие биологи начали исследовать под микроскопом растительные ткани, оказалось, что маленькие ячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живых растительных тканях, но у них они не пустые, а содержат каждая по маленькому студенистому тельцу. После того, как микроскопическому исследованию подвергли животные ткани, было установлено, что они также состоят из мелких студенистых телец, но что эти тельца лишь в редких случаях отделены друг от друга стенками. В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо друг от друга сформулировали клеточную теорию, гласящую, что клетки представляют собой элементарные единицы, из которых в конечном счете построены все растения и все животные. В течение какого-то времени двоякий смысл слова клетка еще вызывал некоторые недоразумения, но затем он прочно закрепился за этими маленькими желеобразными тельцами.

Современное представление о клетке тесно связано с техническими достижениями и усовершенствованиями методов исследования. Помимо обычной световой микроскопии, не утратившей своей роли, в последние несколько десятилетий большое значение приобрели поляризационная, ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особое место занимает электронная микроскопия, разрешающая способность которой позволила проникнуть и изучить субмикроскопическую и молекулярную структуру клетки. Современные методы исследования позволили вскрыть детальную картину клеточной организации.

Каждая клетка состоит из ядра и цитоплазмы, отделенных друг от друга и от внешней среды оболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма, эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии, включения, клеточный центр, специализированные органеллы.

Часть организма, выполняющая какую-то особую функцию, называют органом. Любой орган – легкое, печень, почка, например – имеет каждый свою особую структуру, благодаря которой он играет определенную роль в организме. Точно так же в цитоплазме имеются особые структуры, своеобразное строение которых дает им возможность нести определенные функции, необходимые для метаболизма клетки; эти структуры называют органеллами («маленькими органами»).

Выяснение природы, функции и распределения органелл цитоплазмы стало возможным лишь после развития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, с помощью которого биохимики могут выделять относительно чистые фракции клеток, содержащие определенные органеллы, и изучать, таким образом, отдельные интересующие их метаболические реакции; 3) радиоавтография, сделавшая возможным непосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

Метод, с помощью которого органеллы выделяют из клеток, называют фракционированием. Этот метод оказался очень плодотворным, дав биохимикам возможность выделять разные органеллы клетки в относительно чистом виде. Он позволяет, кроме того, определять химический состав органелл и содержащиеся в них ферменты и на основании получаемых данных делать выводы об их функциях в клетке. В качестве первого шага клетки разрушают путем гомогенизации в какой-нибудь подходящей среде, которая обеспечивает сохранность органелл и предотвращает их агрегацию. Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многие другие клеточные органеллы остаются при этом неповрежденными, такие мембранные переплетения, как эндоплазматический ретикулум, а также плазматическая мембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембран нередко замыкаются сами на себя, в результате чего получаются округлые пузырьки различных размеров.

На следующем этапе клеточный гомогенат подвергают ряду центрифугирований, скорость и продолжительность которых всякий раз возрастает; этот процесс называется дифференциальным центрифугированием. Разные органеллы клетки осаждаются на дне центрифужных пробирок при различных скоростях центрифугирования, что зависит от размеров, плотности и формы органелл. Образующийся осадок можно отобрать и исследовать. Быстрее всех осаждаются такие крупные и плотные структуры, как ядра, а для осаждения более мелких и менее плотных структур, таких, как пузырьки эндоплазматического ретикулума, требуются более высокие скорости и более длительное время. Поэтому при низких скоростях центрифугирования ядра осаждаются, а другие клеточные органеллы остаются в суспензии. При более высоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугировании и очень высоких скоростях в осадок выпадают даже такие мелкие частицы, как рибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобы определить чистоту полученных фракций. Все фракции до некоторой степени загрязнены другими органеллами. Если тем не менее удается добиться достаточной чистоты фракций, то их подвергают затем биохимическому анализу, чтобы определить химический состав и ферментативную активность выделенных органелл.

Сравнительно недавно был создан другой метод фракционирования клеток – центрифугирование в градиенте плотности; при этом центрифугирование производят в пробирке, в которой предварительно наслаивают друг на друга растворы сахарозы все возрастающей концентрации, а следовательно, и возрастающей плотности. При центрифугировании содержащиеся в гомогенате органеллы располагаются в центрифужной пробирке на тех уровнях, на которых находятся растворы сахарозы, соответствующие им по плотности. Этот метод дает биохимикам возможность разделять органеллы одинаковых размеров, но разной плотности (рис. 1.).

Радиоавтография – сравнительно новый метод, безмерно расширивший возможности как световой, так и электронной микроскопии. Это в высшей степени современный метод, обязанный своим возникновением развитию ядерной физики, которое сделало возможным получение радиоактивных изотопов различных элементов. Для радиоавтографии необходимы, в частности, изотопы тех элементов, которые используются клеткой или могут связываться с веществами, используемыми клеткой, и которые можно вводить животным или добавлять к культурам в количествах, не нарушающих нормального клеточного метаболизма. Поскольку радиоактивный изотоп (или помеченное им вещество) участвует в биохимических реакциях так же, как его нерадиоактивный аналог, и в то же время испускает излучение, путь изотопов в организме можно проследить с помощью различных методов обнаружения радиоактивности. Один из способов обнаружения радиоактивности основан на ее способности действовать на фотопленку подобно свету; но радиоактивное излучение проникает сквозь черную бумагу, используемую для того, чтобы защитить фотопленку от света, и оказывает на пленку такое же действие, как свет.

Чтобы на препаратах, предназначенных для изучения с помощью светового или электронного микроскопов, можно было обнаружить излучение, испускаемое радиоактивными изотопами, препараты покрывают в темном помещении особой фотоэмульсией, после чего оставляют на некоторое время в темноте. Затем препараты проявляют (тоже в темноте) и фиксируют. Участки препарата, содержащие радиоактивные изотопы, воздействуют на лежащую над ними эмульсию, в которой под действием испускаемого излучения возникают темные «зерна». Таким образом, получают радиоавтографы (от греч. радио – лучевидный, аутос – сам и графо – писать).

Вначале гистологи располагали лишь несколькими радиоактивными изотопами; так, например, во многих ранних исследованиях с применением радиоавтографии использовался радиоактивный фосфор. Позднее стали использовать значительно больше таких изотопов; особенно широкое применение нашел радиоактивный изотоп водорода – тритий.

Радиоавтография имела и имеет до сих пор очень широкое применение для изучения того, где и как в организме протекают те или иные биохимические реакции.

Химические соединения, меченые радиоактивными изотопами, которые используются для исследования биологических процессов, называют предшественниками. Предшественники – это обычно вещества, подобные тем, которые организм получает из пищи; они служат строительными блоками для построения тканей и включаются в сложные компоненты клеток и тканей таким же образом, как в них включаются немеченые строительные блоки. Компонент ткани, в который включается меченый предшественник и который испускает излучение, называется продуктом.

Клетки, выращиваемые в культуре, хотя и принадлежат к одному и тому же типу, в любой данный момент времени будут находиться на разных стадиях клеточного цикла, если не принять специальных мер для синхронизации их циклов. Тем не менее, путем введения в клетки тритий-тимидина и последующего изготовления радиоавтографов можно определить продолжительность различных стадий цикла. Время наступления одной стадии – митоза – можно определить и без меченого тимидина. Для этого выборку клеток из культуры держат под наблюдением в фазово-контрастном микроскопе, который дает возможность непосредственно следить за течением митоза и устанавливать его сроки. Продолжительность митоза обычно равна 1 ч, хотя в клетках некоторых типов он занимает до 1.5 ч.

G 2-периода .

Для определения продолжительности G 2–периода применяют метод, известный под названием импульсной метки: к культуре клеток добавляют меченый тимидин, а спустя короткое время заменяют культуральную среду свежей, с тем, чтобы предотвратить дальнейшее поглощение клетками меченого тимидина. При этом метку включают только в те клетки, которые в течение кратковременного пребывания в среде с тритий-тимидином находились в S-периоде клеточного цикла. Доля таких клеток невелика и лишь небольшая часть клеток получит метку. Кроме того, все клетки, включающие метку, будут находиться в интерфазе – от клеток, едва вступивших в S-период, до таких, которые почти закончили его за время воздействия тритий-тимидина. В пробе, взятой сразу после удаления меченого тимидина, метка содержится только в интерфазных ядрах, принадлежащих клеткам, которые в период воздействия метки находились в S-периоде; те же клетки, которые в этот период находились в состоянии митоза, остаются немечеными.

Если затем продолжать отбирать из культуры пробы через определенные промежутки времени и изготовлять для каждой последовательной пробы радиоавтограф, то наступит момент, когда метка начнет появляться в митотических d -хромосомах . Метки будут включаться во все те клетки, которые в период наличия в среде тритий-тимидина находились в S-периоде, причем среди этих клеток будут как только что вступившие в S-период, так и почти закончившие его. Совершенно очевидно, что эти последние первыми среди меченых клеток проделают митоз и, следовательно, в их митотических хромосомах обнаружится метка. Тем самым промежуток между 1) временем, когда из культуры был удален меченый тимидин, и 2) временем появления меченых митотических хромосом будет соответствовать продолжительности G 2–периода клеточного цикла.

Определение продолжительности S -периода .

Поскольку клетки, находящиеся в момент введения в среду метки в самом конце S-периода, первыми вступят в митоз, то, следовательно, в тех клетках, у которых S-период начинается непосредственно перед удалением метки, меченые митотические хромосомы появятся в последнюю очередь. Поэтому, если бы нам удалось определить промежуток между временем вступления в митоз клеток, помеченных первыми, и клеток, помеченных последними, мы установили бы продолжительность S-периода. Однако, хотя время, когда впервые появляются меченые митотические хромосомы, установить легко, время вступления в митоз клеток, помеченных последними, определить невозможно (этому препятствует очень большое количество меченых делящихся клеток в последних пробах). Поэтому продолжительность S-периода приходится определять другим способом.

При исследовании радиоавтографов последовательных проб клеток, отбираемых через одинаковые промежутки времени, обнаруживается, что доля клеток, несущих метку в своих митотических хромосомах, постепенно возрастает, пока мечеными не окажутся буквально все делящиеся клетки. Однако, по мере того как клетки одна за другой завершают митоз, они превращаются в меченые интерфазные клетки. Первыми завершают митоз те из меченых клеток, которые вступили в него первыми; и соответственно из клеток с мечеными митотическими хромосомами последними завершают митоз те, которые вступили в него позже всех. Поскольку продолжительность митоза всегда одинакова, то, следовательно, если бы мы могли определить промежуток между: 1) временем окончания митоза в клетках, включивших метку первыми, и 2) временем окончания митоза в клетках, включивших метку последними, мы установили бы продолжительность S-периода. Продолжительность S-периода нетрудно установить, определив промежуток между: 1) моментом времени, когда 50% митотических клеток в культуре несут метку, и 2) моментом времени, после которого культура уже не содержит 50% меченых клеток.

Определение времени генерации (общей продолжительности всего клеточного цикла).

Продолжая отбирать из культуры пробы клеток, можно обнаружить, что меченые фигуры митоза в какой-то момент совершенно исчезают, а затем появляются вновь. Такие делящиеся клетки представляют собой дочерние клетки, происходящие от тех материнских клеток, которые включили метку, находясь в момент воздействия тритий-тимидина в S-периоде. Эти материнские клетки перешли в S-период, разделились, а затем прошли через вторую интерфазу и второе деление, то есть проделали один полный цикл и часть следующего. Время, необходимое для прохождения полного клеточного цикла, называется временем генерации. Оно соответствует промежутку между двумя последовательными пиками включения метки и обычно соответствует отрезку между теми точками последовательных восходящих кривых, в которых 50% фигур митоза содержат метку.


Литература.

А.Хэм, Д.Кормак «Гистология», том 1 Москва «МИР» 1982;

М.Г.Абрамов «Клиническая цитология» Москва «МЕДИЦИНА» 1974;

Ю.С.Ченцов «Общая цитология»

Галилео-Галилей (1564 -1642) (итальянский философ, математик, физик и астроном, оказавший значительное влияние на науку своего времени; изобретатель микроскопа) Один из первых микроскопов (1876)

Световая микроскопия Роберт Гук (1635 -1703)1665 г – монография «Микрография» , где описаны его микроскопические и телескопические наблюдения

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ МИКРОСКОПА Современный световой микроскоп 1. Механическая часть 1. 1. Корпус 1. 2. Механический (предметный) столик 1. 3. Бинокулярная насадка 1. 4. Фокусировочный механизм 2. Осветительная система 2. 1. Источник света 2. 2. Коллектор 2. 3. Конденсор 3. Оптическая часть 3. 1. Объективы 3. 2. Окуляры

Ход лучей в стандартном микроскопе источник света конденсор образец объектив окуляр глаз Ход лучей в современном микроскопе источник света образецколлектор конденсор объектив окуля р изображение образца. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ МИКРОСКОПА

Угол раскрытия объектива: РАЗРЕШЕНИЕ МИКРОСКОПА Формула Рэлея: Разрешение микроскопа по полю – минимальное расстояние между двумя точками формируемого им изображения, пока они еще видны раздельно. где – длина волны используемого света, n – показатель преломления среды, – угол раскрытия объектива. источник света образецколлектор конденсор объектив окуля р изображение образца Формула Аббе: где NA – численная апертура объектива, равная n sin (/2). NAd 61, 0 2/sin 2 n d

2 114 n. NA ndz Разрешение микроскопа по глубине – глубина фокуса. Формула Янга:

Дифракция лазерного луча с длиной волны 650 нм, прошедшего через отверстие диаметром 0, 2 мм МИКРОСКОП КАК ДИФРАКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ dxxuixuxfu. F)]2 sin()2)2 sin()2)}